RATIONAL HOMOTOPY OF THE SPACE OF SECTIONS OF A NILPOTENT BUNDLE

BY

ANDRÉ HAEFLIGER

ABSTRACT. We show that an algebraic construction proposed by Sullivan is indeed a model for the rational homotopy type of the space of sections of a nilpotent bundle.

In his paper L'homologie des espaces fonctionnels, R. Thom studied the homotopy type of the space F_t^X of continuous maps of X into F homotopic to a given map f.

Starting from a Postnikov decomposition of F, he built the functional space F_f^X step by step. He also indicated how one could construct a differential graded algebra describing the rational homotopy type of F_f^X .

Later on, Sullivan gave an algebraic model which mirrors this construction in terms of a DG-algebra representing X and the minimal model of F.

The aim of this paper is to show, following the method of Thom, that the model of Sullivan is indeed a model for the functional space under suitable restrictions.

As in [3], we consider the slightly more general problem of the determination of the rational homotopy type of the space of sections Γ_s of a nilpotent fiber space $p: Y \to X$ homotopic to a given section s.

In §1 we explain Thom's geometric construction. In §2 we describe an algebraic model for an abelian Galois covering of a nilpotent space. In §3 we show how the model of Sullivan fits with the geometry.

I thank the referee for many improvements of this paper.

1. A Postnikov factorization of the space of sections.

1.1. Let G be a finitely generated abelian group and let X be a path connected space whose cohomology groups $H^k(X; G)$ are finitely generated for each k.

To avoid difficulties with the topologies (cf. [4]), we can work in the category of simplicial sets.

PROPOSITION (THOM [4]). The space $K(G, m)^X$ of continuous maps of X in the Eilenberg-Mac Lane complex K(G, m) is homotopically equivalent to the product $\prod_{i=0}^m K_i$ of the Eilenberg-Mac Lane spaces $K_i = K(H^{m-i}(X; G), i)$.

More precisely, let $\chi \in H^m(K(G; m); G)$ be the fundamental class of K(G; m). If

$$e: K(G, m)^X \times X \to K(G, m)$$

Received by the editors September 18, 1979 and, in revised form, May 16, 1981. 1980 Mathematics Subject Classification. Primary 55P15, 55R05.

is the evaluation map, we can write $e^*(\chi)$ uniquely as $\sum \chi_i$ where $\chi_i \in H^i(K(G, m)^X; H^{m-i}(X; G))$. Then the projection $K(G; m)^X \to K_i$ is determined by the cohomology class χ_i .

PROOF. As K(G; m) is a Hopf space, all the connected components of $K(G, m)^X$ have the same homotopy type as the connected component $K(G, m)_0^X$ of the constant map. They are in bijection with $H^m(X; G) = K(H^m(X; G), 0)$.

If $f: S^i \times X \to K(G, m)$ represents an element of $\pi_i(K(G, m)_0^X)$, then its homotopy class is characterized by

$$f^*(\chi) \in H^0(S^i; Z) \otimes H^m(X; G) + H^i(S^i; Z) \otimes H^{m-i}(X; G).$$

The first component of $f^*(\chi)$ vanishes because f restricted to $S^i \times \{x\}$ is homotopic to a constant map. The second component is of the form $s \otimes u_f$, where s is the canonical generator of $H^i(S^i; \mathbf{Z})$, and $u_f \in H^{m-i}(X; G)$.

It is easy to see that the map $f \mapsto u_f$ induces an isomorphism of $\pi_i(K(G; m)_0^X)$ on $H^{m-i}(X; G) = \pi_i(\prod K_j)$ and that the map $K(G; m)^X \to \prod K_j$ described above induces an isomorphism on homotopy groups, so is a homotopy equivalence.

1.2. Consequence. Let Z be a topological space and let $f: Z \times X \to K(G; m)$ be a continuous map. It gives a map $\varphi: Z \to K(G, m)^X$; its composition with the projection on $K(H^{m-i}(X; G), i)$ will be denoted by φ_i . Then the homotopy class of φ_i is determined by the component of

$$f^*(\chi) \in H^m(Z \times X; G)$$

in $H^{i}(Z; H^{m-i}(X; G))$.

It follows that the map induced by φ_i on the rational cohomology can be described as follows.

Let $V = \text{Hom}(G, Q) = H^m(K(G, m); Q)$. Then

$$H^{i}(K(H^{m-i}(X;G),i);Q)\approx H_{m-i}(X;Q)\otimes V,$$

where $H_{m-i}(X; Q)$ is identified with the dual of $H^{m-i}(X; Q)$.

The homomorphism φ_i^* : $H^i(K(H^{m-i}(X;G),i),Q) \to H^i(Z;Q)$ is given by

$$\varphi_i^*(a'\otimes v)=a'\cap f^*(v),$$

where $a' \in H_{m-i}(X; Q)$, $v \in V$ and $a' \cap (a \otimes b) = a'(a)b$, for $a \otimes b \in H^*(X; Q) \otimes H^*(Z; Q) \approx H^*(Z \times X; Q)$.

1.3. Space of sections of a nilpotent bundle. Let $p: Y \to X$ be a bundle which admits a Moore-Postnikov factorization (in the sense of Spanier [2, pp. 437-444]). This means that the map p is, up to homotopy equivalence, the composition of a possibly infinite sequence of fibrations

$$X = Y_0 \stackrel{p_1}{\leftarrow} Y_1 \stackrel{p_2}{\leftarrow} Y_2 \leftarrow \cdots,$$

where p_r : $Y_r o Y_{r-1}$ is a principal $K(G_r, n_r)$ -bundle, $n_r \ge 1$. Also the sequence converges, i.e. for each positive integer k, then $n_r > k$ for r large enough. We also assume G_r abelian. Such a bundle will be called *nilpotent*.

We assume that the integral homology of X is finitely generated (in particular $H_j(X, \mathbb{Z}) = 0$ for j large) and that each G_r is finitely generated.

We want to describe the space Γ_s of continuous sections of $p: Y \to X$ which are homotopic to a given section s.

From s, we obtain a sequence s_r : $X o Y_s$ of compatible sections of $Y_r o X$, i.e. $s_{r-1} = p_r s_r$. The principal bundle p_r : $Y_r o Y_{r-1}$ is induced from the path space bundle π : $P o K(G_r, n_r + 1)$ by a map c_{r-1} : $Y_{r-1} o K(G_r, n_r + 1)$. We can assume that $c_{r-1} s_{r-1}$ maps X on the base point.

Note that P^X is isomorphic to the path space of $K(G_r, n_r + 1)_0^X$, the space of maps of X in $K(G_r, n_r + 1)$ homotopic to a constant. The fiber above the constant map on the base point is $K(G_r, n_r)^X$, where $K(G_r, n_r)$ is the fiber of P above the base point.

Let Γ_r be the space of sections of the bundle $Y_r \to X$ which are homotopic to s_r . Let $q_r \colon \Gamma_r \to \Gamma_{r-1}$ be the map associating to a section σ the section $p_r \cdot \sigma$.

Proposition. Γ_s is homotopically equivalent to the limit of the convergent sequence of principal fibrations

$$\Gamma_1 \leftarrow \Gamma_2 \leftarrow \cdots$$
.

Let e_{r-1} : $\Gamma_{r-1} \times X \to Y_{r-1}$ be the evaluation map $e_{r-1}(\sigma, x) = \sigma(x)$. The bundle q_r : $\Gamma_r \to \Gamma_{r-1}$ is the connected component of s_r in the principal $K(G_r, n_r)^X$ -bundle classified by the map \bar{c}_{r-1} : $\Gamma_{r-1} \to K(G_r, n_r + 1)_0^X$ corresponding to $c_{r-1} \circ e_{r-1}$.

Indeed let $\hat{\Gamma}_r$ be the space of sections of $Y_r \to X$ projecting on a section of Y_{r-1} homotopic to s_{r-1} . An element of $\hat{\Gamma}_r$ is given by a pair (f, g) where $f: X \to P$ and $g: X \to Y_{r-1}$, with $g \in \Gamma_{r-1}$ and $\pi \circ f = c_{r-1} \circ g$. This amounts to saying that $\hat{\Gamma}_r$ is the bundle over Γ_{r-1} induced by \bar{c}_{r-1} from P^X .

 Γ_r is just the connected component of s_r in $\hat{\Gamma}_r$. The fiber of $\Gamma_r \to \Gamma_{r-1}$ is isomorphic to

$$K(G_r, n_r)_0^X \times G'$$

where $G' \subset H^{n_r}(X; G_r)$ is the image of $\pi_1(\Gamma_r)$ by the homomorphism induced on π_1 by \bar{c}_{r-1} ;

$$\lambda : \pi_1(\Gamma_{r-1}) \to \pi_1(K(G_r, n_r + 1)_0^X) = H^{n_r}(X; G).$$

Indeed, let $\tilde{\Gamma}_{r-1} \to \Gamma_{r-1}$ be the covering whose fibers are the set of connected components of the fibers of $\Gamma_r \to \Gamma_{r-1}$. It is a Galois covering with group G'. The fiber Γ_0 of $\Gamma_r \to \tilde{\Gamma}_{r-1}$ above the projection of s_r is the set of sections of $Y_r \to X$ projecting on s_{r-1} and homotopic to s_r by a homotopy whose projection in Γ_{r-1} is just the trivial path. So Γ_0 is canonically isomorphic to $K(G_r, n_r)_0^X$, because the bundle induced by s_{r-1} from $Y_r \to Y_{r-1}$ is canonically isomorphic to $X \times K(G_r, n_r)$ (we have assumed that $c_{r-1} \circ s_{r-1}$ is the constant map).

2. Model for a Galois covering of a nilpotent space.

2.1. Notations. All DG-algebras A (differential graded) will be defined over the field Q of rationals, commutative in the graded sense and positively graded ($A^q = 0$ for q < 0), unless otherwise specified.

A morphism $A \to B$ of DG-algebras is a weak equivalence, abbreviated w.e., if it induces an isomorphism $H(A) \to H(B)$ in cohomology.

If A is a DG-algebra and V a graded vector space, then A(V) will be a DG-algebra which is, as a graded algebra, the tensor product of A with the symmetric algebra (in the graded sense) over V, with a differential d extending the given differential on $A \subset A(V)$. We identify V to the vector subspace $1 \otimes V$ in A(V).

A model for a space X is a DG-algebra A together with a w.e. $\alpha: A \to \Omega^*(X)$, where $\Omega^*(X)$ denotes the DG-algebra of Q-polynomial forms on the singular complex of X.

For instance, let G be an abelian group such that V = Hom(G; Q) is a finite dimensional vector space over Q. Consider V as a graded vector space homogeneous of degree m. Then the algebra Q(V) of polynomial or alternate forms on V according to the parity of m, with the zero differential, is a model for the Eilenberg-Mac Lane complex K(G, m), m > 0.

We shall use repeatedly the following fact which follows easily from Grivel [1] (see also S. Halperin [5]).

PROPOSITION. Let $X_2 \to X_1$ be a principal abelian fibration whose fiber X_0 is a product of connected Eilenberg-Mac Lane complexes. Let $\varphi_1: A \to \Omega^*(X_1)$ be a morphism of augmented DG-algebras which is a model for X_1 . Let A(V) be a DG-algebra such that $dV \subset A$. Assume we have a morphism $\varphi_2: A(V) \to \Omega^*(X_2)$ such that the diagram

$$A(W)$$
 $\stackrel{\varphi_2}{\rightarrow}$ $\Omega^*(X_2)$
 \uparrow \uparrow
 A $\stackrel{\varphi_1}{\rightarrow}$ $\Omega^*(X_1)$

commutes.

Let $\varphi_0: Q(V) \to \Omega^*(X_0)$ be the induced morphism on the fiber. Then φ_2 (resp. φ_0) is a w.e. if φ_0 (resp. φ_2) is a w.e.d.

2.2. Abelian Galois covering of a nilpotent space. Let X be a connected nilpotent space (i.e. X considered as a bundle over a point is nilpotent as in 1.3). We assume that the homotopy groups $\pi_i(X)$, i > 1, are such that $\pi_i(X) \otimes Q$ are finite dimensional vector spaces, and the same property for the successive quotients in the lower central series of the nilpotent group $\pi_1(X)$.

Let $p: \tilde{X} \to X$ be a Galois covering with abelian Galois group G such that $G \otimes Q$ is finite dimensional. It is classified by a surjective homomorphism

$$\lambda \colon \pi_1(X) \to G.$$

We consider $V = \operatorname{Hom}(G, Q)$ as a graded vector space homogeneous of degree 0. Let $\alpha: A \to \Omega^*(X)$ be a model for X. There is an injective linear map h of V in the cocycles of degree 1 of A such that, when we pass to cohomology, h is the dual $\lambda^*: V \to \operatorname{Hom}(\pi_1(X), Q) = H^1(X; Q)$ of λ . Note that the kernel of $p^*: H^1(X; Q) \to H^1(\tilde{X}; Q)$ is the image of λ^* . On A(V), the algebra of polynomials on V with coefficients in A, consider the differential d extending the differential of A and such that d(v) = h(v) for $v \in V$.

PROPOSITION. A(V) is a model of \tilde{X} . More precisely, any morphism $\tilde{\alpha}$: $A(V) \to \Omega^*(\tilde{X})$ extending α is a model.

PROOF. Consider a minimal Postnikov tower of X,

$$X_1 \leftarrow X_2 \leftarrow X_{r-1} \leftarrow \cdots \leftarrow X_r \leftarrow \cdots \leftarrow X',$$

where each map is a principal abelian fibration, X_1 being $K(\pi_1(X)/[\pi_1(X), \pi_1(X)], 1)$ and $X' = \lim X$, being homotopy equivalent to X by a map $X \to X'$.

Let B = Q(W) be a minimal model for X (cf. [3]) reflecting the above decomposition: there is a filtration $W_1 \subset W_2 \subset \cdots \subset W$ such that $Q(W_r)$ is a DG-subalgebra of $Q(W_{r+1})$ with $dW_{r+1} \subset Q(W_r)$, and $W_1 = \operatorname{Hom}(\pi_1(X), Q) = H^1(X; Q)$. There is also a morphism $Q(W) \xrightarrow{\varphi} \Omega^*(X')$ which is a weak equivalence and whose restriction φ_r to $Q(W_r)$ gives a model $Q(W_r) \to \Omega^*(X_r)$ of X_r .

Consider the exact sequence

$$0 \to N \to \pi_1(X)/[\pi_1(X), \pi_1(X)] \to G \to 0$$

given by λ . It induces a fibration

$$X_1 = K(\pi_1(X)/[\pi_1(X), \pi_1(X)], 1) \to K(G, 1)$$

with fiber K(N, 1).

So we get a fibration $X' \to K(G, 1)$ by composition $X' \to X_1 \to K(G, 1)$. The inclusion of its fiber \tilde{X}' in X' is homotopically equivalent to $p: \tilde{X} \to X$.

Let $W_0 \subset W_1$ be the image of V by $\lambda^*: V \to H^1(X; Q) = W_1$. Choose φ_1 so that its restriction to $Q(W_0)$ is a model $Q(W_0) \to \Omega^*(K(G, 1))$. Let $B/(W_0)$ be the DG-algebra quotient of B = Q(W) by the ideal generated by W_0 . The composition of $B \to \Omega^*(X')$ with the restriction to the fiber \tilde{X}' vanishes on W_0 . So we get a morphism $B/(W_0)$ in $\Omega^*(\tilde{X}')$ which is a model (in fact a minimal model) as follows from repeated applications of the proposition in 2.1.

On B(V) define a differential d as above by $dv = \lambda^* v$, $v \in V$. The map $B(V) \to B/(W_0)$ obtained by mapping V on 0 and taking the quotient on B induces an isomorphism in cohomology (this can be proved by induction on r, using the filtration of W by the W_r).

So we can get a homotopy commutative diagram

$$\begin{array}{ccc} B(V) & \stackrel{\tilde{\beta}}{\rightarrow} & \Omega^*(\tilde{X}) \\ \uparrow & & \uparrow \\ B & \stackrel{\beta}{\rightarrow} & \Omega^*(X) \end{array}$$

where the horizontal maps are w.e. In fact, we can assume the diagram commutative, because B is a free nilpotent algebra.

Let $\alpha: A \to \Omega^*(X)$ be a model for X and $\tilde{\alpha}: A(V) \to \Omega^*(\tilde{X})$ be a morphism extending α (such a morphism exists because $p^*\lambda^* = 0$). As B is the minimal model

of A, there is a w.e. $f: B \to A$ extending to a morphism $f: B(V) \to A(V)$. It is easy to check that f also induces an isomorphism in cohomology (filter by the degree of the polynomials in V and use induction).

After changing β by a homotopy, we can assume that $\alpha f = \beta$. Now $\tilde{\alpha}\tilde{f}$ and $\tilde{\beta}$ differs only by a map in the constant functions in $\Omega^*(\tilde{X})$, so they are homotopic. Hence α is also a weak equivalence.

REMARK. If $\lambda \colon \pi_1(X) \to G$ is not surjective, then the same result is valid if \tilde{X} is replaced by one of the connected components of the Galois G-covering defined by λ , and V replaced by its quotient \overline{V} isomorphic to the image of λ^* .

3. The model of Sullivan and the main theorem.

3.1. The algebraic model of Sullivan. Let $p: Y \to X$ be a nilpotent bundle, i.e. admitting a Moore-Postnikov factorization through principal $K(G_r, n_r)$ -fibrations as in 1.3. We assume that $V_r = \text{Hom}(G_r, Q)$ is finite dimensional. It will be considered as a graded vector space homogeneous of degree n_r .

Let $\alpha: A \to \Omega^*(X)$ be a model for X. Then a model for Y, reflecting this Postnikov decomposition, will be of the form A(V), where $V = \bigoplus V_r$ (cf. [3]). Suppose that $s: X \to Y$ is a section. It gives a morphism $\sigma: A(V) \to A$ which is the identity on A. We can assume that σ is zero on V.

Indeed if this is not the case, let h be the A-algebra automorphism of A(V) mapping v on $v - \sigma(v)$; define on A(V) a new differential d' such that dh = hd'. Then h is a DG-automorphism and $\sigma \circ h$ maps V on zero.

We assume that A is finite dimensional. Denote by \underline{A} the lower graded vector space whose ith component \underline{A}_i is $\operatorname{Hom}(A^i,Q)$. Let $\underline{A}\otimes V$ be the graded vector space whose component of degree k is $\bigoplus_{-i+j=k}\underline{A}_i\otimes V^j$ (so in general we have components with negative degree).

There is a canonical A-algebra homomorphism

$$\varepsilon': A(V) \to A \otimes Q(\underline{A} \otimes V)$$

defined by $\varepsilon'(a) = a \otimes 1$, $a' \cap \varepsilon'(v) = a' \otimes v$ for each $a' \in \underline{A}$, $v \in V$, where $a' \cap (a \otimes z) = a'(a)z$, for $z \in Q(\underline{A} \otimes V)$.

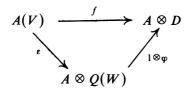
In terms of an additive basis a_i of A and the dual basis a_j' of \underline{A} , then $\varepsilon'(v) = \sum_i a_i \otimes (a_i' \otimes v)$.

On the algebra $Q(\underline{A} \otimes V)$, which is in general not positively graded, there is a unique differential d such that e' is a morphism of DG-algebras. The natural augmentation $Q(\underline{A} \otimes V) \to Q$ which is the identity on Q and zero on $\underline{A} \otimes V$ commutes with the differentials.

The differential on $Q(\underline{A} \otimes V)$ induces on $\underline{A} \otimes V$ a differential d_0 . Consider the quotient of $Q(\underline{A} \otimes V)$ by the ideal generated by elements of degree ≤ 0 of $\underline{A} \otimes V$ and their differentials. It is isomorphic to the algebra Q(W), where W is the quotient of $\underline{A} \otimes V$ by elements of degree ≤ 0 and their images by d_0 . Note that Q(W) is positively graded and $Q(W)^0 = Q$.

From ε' we get a DG-map ε : $A(V) \to A \otimes Q(W)$. This is the model proposed by Sullivan for the evaluation map e: $X \times \Gamma_s \to Y$. It has the following universal property. Let D be a DG-algebra such that $D^0 = Q$, and let $f: A(V) \to A \otimes D$ be a

morphism of augmented DG-algebras over A. Then there is a unique $\varphi: Q(W) \to D$ such that the diagram



commutes.

3.2. Theorem. Under the above assumptions $(p: Y \to X \text{ a nilpotent bundle and } X \text{ admitting a finite dimensional model})$, the DG-algebra Q(W) is a model for the space Γ_s of sections of $p: Y \to X$ homotopic to a given section s. The morphism ε is a model for the evaluation map e.

For the proof, we first show the theorem in the case of a trivial K(G, m)-bundle, using a model weakly equivalent to Sullivan's model. Then we assume by induction that the theorem is proved for the space Γ_{r-1} of sections of the bundle $Y_{r-1} \to X$ in the tower of $p: Y \to X$ (cf. 1.3). We then construct in 3.5 an algebraic model for the bundle $\Gamma_r \to \Gamma_{r-1}$ (remember that the fiber is not connected in general) weakly equivalent to Sullivan's model, and show in 3.6 that it is indeed a model using §2.

3.3. Case of a K(G, m)-trivial bundle. We assume that $Y = X \times K(G, m)$, with the section s corresponding to the constant map of X on the base point of K(G, m).

In that case, V = Hom(G, Q) is homogeneous of degree m. The differential on $Q(\underline{A} \otimes V)$ is given by

$$d(a'\otimes v)=\pm \partial a'\otimes v,$$

where $\partial: \underline{A} \to \underline{A}$ is the transpose of d.

Let W be the quotient of $\underline{A} \otimes V$ by the subspace of elements of degree < 0 and cocycles in degree 0.

Let $H_*(\underline{A}) = \text{Hom}(H^*(A), Q) = H_*(X; Q)$. We can construct a linear injection j: $H_*(A) \to \underline{A}$ mapping a homology class on a representative cycle.

Let \overline{W} be the graded vector space defined by

$$\begin{split} \overline{W}^k &= \bigoplus_{-i+j=k} H_i(\underline{A}) \otimes V^j & \text{for } k > 0, \\ \overline{W}^k &= 0 & \text{for } k \leq 0. \end{split}$$

j gives an inclusion of \overline{W} in W and the corresponding inclusion \overline{j} : $Q(\overline{W}) \to Q(W)$ is a weak equivalence (the differential on $Q(\overline{W})$ is trivial).

There is a w.e.: $Q(V) \to \Omega^*(K(G, m))$ such that the induced map on cohomology gives the canonical isomorphism of $H^m(Q(V)) = V$ on $H^m(K(G, m); Q) = \text{Hom}(G, Q)$.

¹Cf. remark at the end for a less restrictive hypothesis.

Let Γ_0 be the space $K(G, m)_0^X$ of maps of X in K(G, m) homotopic to the constant map on the base point, and let $e: X \times \Gamma_0 \to X \times K(G, m)$ defined by e(x, g) = (x, g(x)) be the evaluation map.

We can construct a homotopy commutative diagram

$$\Omega^*(X \times \Gamma_0) \quad \stackrel{\Omega^*(e)}{\leftarrow} \qquad \Omega^*(Y)$$

$$\uparrow \qquad \qquad \uparrow$$

$$A \otimes \Omega^*(\Gamma_0) \quad \stackrel{f}{\leftarrow} \qquad A \otimes \mathbf{Q}(V) = A(V)$$

where the vertical arrows are w.e., and f is a morphism of DG-algebras over A such that $f(v) \in A \otimes \Omega^*(\Gamma_0)^+$, where $\Omega^*(\Gamma_0)^+$ is the kernel of the augmentation given by the base point.

There is a unique morphism $\varphi: Q(W) \to \Omega^*(\Gamma_0)$, mapping the class of $a' \otimes v$ on $a' \cap f(v)$, such that the diagram

$$A \otimes \Omega^*(\Gamma_0) \longleftarrow f \qquad A(V)$$

$$1 \otimes \varphi \qquad A \otimes O(W)$$

commutes, where $a' \cap \varepsilon(v)$ is the class of $a' \otimes v$.

To check that φ (or $\varphi \circ \overline{j}$) is a weak equivalence, we pass to cohomology in the above diagram and use 1.2 which shows that $H^*(\Gamma_0; Q) = Q(\overline{W})$ and gives the precise description of the evaluation map.

3.4 The induction hypothesis. For the general case of a nilpotent bundle, we take the notations of 1.3.

To say that A(V) is a model of Y reflecting the factorization $X = Y_0 \leftarrow Y_1 \leftarrow Y_2 \leftarrow \cdots$ means that

(a) each $B_r = A(\bigoplus_{k \le r} V_k)$ is a DG-subalgebra of A(V), and $dV_r \subset B_{r-1}$, so that we have an increasing sequence of DG-subalgebras

$$A = B_0 \subset B_1 \subset B_2 \subset \cdots;$$

(b) for each r, we have a weak equivalence α_r : $B_r \to \Omega^*(Y_r)$ such that the diagram

$$\begin{array}{cccc} B_r = B_{r-1}(V_r) & \stackrel{\alpha_r}{\to} & \Omega^*(Y_r) \\ & \uparrow & & \uparrow \\ B_{r-1} & \stackrel{\alpha_{r-1}}{\to} & \Omega^*(Y_{r-1}) \end{array}$$

commutes and α_r induces a weak equivalence $Q(V_r) \to \Omega^*(K(G_r, n_r))$ which in cohomology gives the canonical isomorphism $V_r \to H^{n_r}(K(G_r, n_r); Q)$; and

(c) we can choose α , such that the diagram

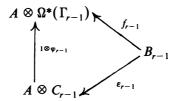
$$B_r \xrightarrow{\alpha_r} \Omega^*(Y_r)$$

$$\downarrow^{\sigma_r} \qquad \qquad \downarrow^{\Omega^*(s_r)}$$

$$A \rightarrow \Omega^*(X)$$

commutes, where σ_r is the restriction of σ to B_r .

Let C_{r-1} be the Sullivan model for Γ_{r-1} . We assume by induction that we have a w.e. $\varphi_{r-1}: C_{r-1} \to \Omega^*(\Gamma_{r-1})$ so that the diagram



commutes, where f_{r-1} is a model for the evaluation map e_{r-1} : $X \times \Gamma_{r-1} \to Y_{r-1}$. We also assume that σ_{r-1} , together with the augmentations in C_{r-1} and $\Omega^*(\Gamma_{r-1})$ (the latter given by s_{r-1}) give morphisms of the diagram in A so that everything is commutative.

3.5. Construction of an algebraic model. We construct as follows a model for the fibration $\Gamma_r \to \Gamma_{r-1}$.

There is an algebra homomorphism ε'_r such that

$$A \otimes C_{r-1}(\underline{A} \otimes V_r) \quad \stackrel{\varepsilon'_r}{\leftarrow} \quad B_{r-1}(V_r) = B_r$$

$$\uparrow \qquad \qquad \uparrow$$

$$A \otimes C_{r-1} \quad \stackrel{\varepsilon_{r-1}}{\leftarrow} \quad B_{r-1}$$

commutes (compare with 3.1), defined by $a' \cap \varepsilon'(v) = a' \otimes v$.

On $C_{r-1}(\underline{A} \otimes V_r)$, there is a unique differential such that ε_r' commutes with d;

$$d(a' \otimes v) = \pm \partial a' \otimes v + \pm a' \cap \varepsilon_{r-1}(dv).$$

Let $C_{r-1}(U)$ be the quotient of $C_{r-1}(\underline{A} \otimes V_r)$ by the ideal generated by elements of $\underline{A} \otimes V_r$ of degree < 0 and those elements of degree 0 whose boundary is in the ideal generated by elements of negative degree (this ideal is closed under d and $H^0(C_{r-1}(U)) = Q$ because $C_{r-1}^0 = Q$).

We get from ε'_r a morphism

$$\varepsilon_r \colon B_{r-1}(V_r) \to A \otimes C_{r-1}(U)$$

extending ε_{r-1} . We shall prove that this is a model for e_r .

 $C_{r-1}(U)$ verifies the following universal property: let D be a DG-algebra with an augmentation and such that $H^0(D) = Q$. Given a commutative diagram

$$A \otimes D \qquad \stackrel{f}{\leftarrow} \qquad B_{r-1}(V_r)$$

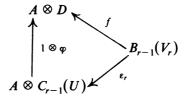
$$\uparrow 1 \otimes h \qquad A \qquad \uparrow$$

$$\nearrow \qquad \nwarrow \sigma_{r-1}$$

$$A \otimes C_{r-1} \qquad \stackrel{\epsilon}{\leftarrow} \qquad B_{r-1}$$

where the left-hand maps in A are the tensor product of the identity on A with the

augmentation, there is a unique morphism $\varphi: C_{r-1}(U) \to D$ of augmented DG-algebras over C_{r-1} such that



commutes. On the class u of $a' \otimes v$, φ is given by

$$\varphi(u) = a' \cap f(v).$$

We get the Sullivan model C_r by taking the quotient of $C_{r-1}(U)$ by the ideal generated by elements of U of degree 0 and their differentials.

It will be sufficient to prove that ε_r is a model for e_r , once we have checked that the quotient map $C_{r-1}(U) \to C_r$ is a weak equivalence.

 C_{r-1} is of the form Q(S) with $S^p = 0$ for $p \le 0$. Hence the differential d maps U^0 injectively in $U^1 \oplus S^1$. The DG-algebra $C_{r-1}(U)$ is nilpotent, hence we can choose elements x_1, \ldots, x_k of $U \oplus S$ so that $C_{r-1}(U) = Q(U^0, dU^0)(x_1, \ldots, x_k)$ and so that $dx_{i+1} \in Q(U^0, dU^0)(x_1, \ldots, x_i)$. By induction on i, the projection of $Q(U^0, dU^0)(x_1, \ldots, x_i)$ on its quotient by the ideal generated by U^0 and dU^0 is a w.e. When i = k this is the projection of $C_{r-1}(U)$ on C_r .

3.6. Proof of the induction step. One can find a morphism f_r , which is a model for the evaluation map e_r : $X \times \Gamma_r \to Y_r$ and such that

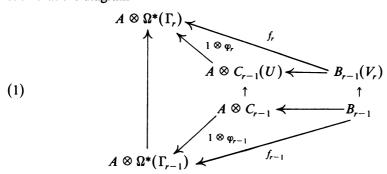
$$A \otimes \Omega^*(\Gamma_r)$$
 $\stackrel{f_r}{\leftarrow}$ $B_{r-1}(V_r) = B_r$
 \uparrow A \uparrow
 $A \otimes \Omega^*(\Gamma_{r-1})$ $\stackrel{f_r}{\leftarrow}$ B_{r-1}

commutes.

By the universal property, we get a morphism

$$\varphi_r \colon C_{r-1}(U) \to \Omega^*(\Gamma_r)$$

such that the diagram



commutes.

We have to show that φ_r is a weak equivalence. For $u \in U$, $du = d_0u + d_1u$, where $d_0u \in U$ and $d_1u \in C_{r-1}$ (cf. 3.5).

Let \overline{U}^0 be the kernel of d_0 : $U^0 \to U^1$. Then $C_{r-1}(\overline{U}^0)$ is a DG-subalgebra of $C_{r-1}(U)$ and d maps \overline{U}^0 injectively into the 1-cocycles of C_{r-1} . When we pass to cohomology d: $\overline{U}^0 \to H^1(C_{r-1}) = H^1(\Gamma_{r-1}; Q)$ is still injective because $C_{r-1}^0 = Q$. The image is generated by cohomology classes of elements of the form $a' \cap \varepsilon_{r-1}(dv)$, where $v \in V_r$, $a' \in \underline{A}_n$ with $\partial a' = 0$.

As in 1.3, we consider the factorization $\Gamma_r \to \tilde{\Gamma}_{r-1} \to \Gamma_{r-1}$. We get a commutative diagram

$$\begin{array}{cccc} C_{r-1}(U) & \stackrel{\varphi_r}{\to} & \Omega^*(\Gamma_r) \\ \uparrow & & \uparrow \\ C_{r-1}(\overline{U}^0) & \stackrel{\tilde{\varphi}_{r-1}}{\to} & \Omega^*(\tilde{\Gamma}_{r-1}) \\ \uparrow & & \uparrow \\ C_{r-1} & \stackrel{\varphi_{r-1}}{\to} & \Omega^*(\Gamma_{r-1}) \end{array}$$

because ε_r maps elements of \overline{U}^0 on functions on the singular complex of Γ_r whose differential comes from $\Omega^*(\Gamma_{r-1})$, hence are constant on the connected components of the fibers of $\Gamma_r \to \Gamma_{r-1}$.

We claim that $\tilde{\epsilon}_{r-1}$ is a weak equivalence. Indeed, $\tilde{\Gamma}_{r-1}$ is a connected component of the Galois covering defined by the homomorphism λ : $\pi_1(\Gamma_r) \to H^{n_r}(X, G_r)$ induced by $\bar{\epsilon}_{r-1}$: $\Gamma_{r-1} \to K(G_r, n_r + 1)_0^X$ (cf. 1.3). Its dual gives a map

$$\lambda^* : \operatorname{Hom}(H^{n_r}(X; G_r), Q) = H_n(X; Q) \otimes V_r \to H^1(\Gamma_{r-1}; Q)$$

whose image is isomorphic to $d\overline{U}^0$ by the remark above and 1.2. So we can apply the proposition and the last remark of 2.2 to deduce that $\tilde{\epsilon}_{r-1}$ is a weak equivalence $(\Gamma_{r-1}$ is a nilpotent space).

 $C_{r-1}(U)$ can be considered as an algebraic bundle over $C_{r-1}(\overline{U}^0)$, with fiber $Q(W) = C_{r-1}(U) \otimes_{C_{r-1}(\overline{U}^0)} Q$ where Q is considered as a $C_{r-1}(\overline{U}^0)$ -module via the augmentation. The vector space W is isomorphic to the quotient of $\underline{A} \otimes V_r$ by the subspace of elements of degree < 0 and d_0 -cycles in degree 0. We can express $C_{r-1}(U)$ as $C_{r-1}(\overline{U}^0) \otimes Q(W)$, where the differential of $w \in W$ has a component in W and another one of degree at least 2 in C_{r-1} .

Recall that the fiber Γ_0 of $\Gamma_r \to \tilde{\Gamma}_{r-1}$ containing s_r is isomorphic to $K(G_r, n_r)_0^X$, where $K(G_r, n_r)$ is the fiber of $Y_r \to Y_{r-1}$.

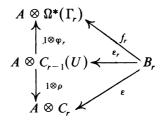
As $\tilde{\varphi}_{r-1}$ preserves the augmentation, we get a morphism φ_r^0 of the algebraic fiber Q(W) in the DG-algebra of forms $\Omega^*(\Gamma_0)$ of the geometric fiber, and the diagram (1) gives the commutative diagram

$$A \otimes \Omega^*(\Gamma_0) \downarrow \\ A \otimes Q(W) \longleftarrow A \otimes Q(V_r)$$

and we show as in 3.3 that φ_r^0 is a weak equivalence.

As φ_r induces a weak equivalence on the base and the fiber, we can apply the proposition in 2.1 to show that φ_r is also a weak equivalence.

Consider the commutative diagram over A



when $\rho: C_{r-1}(U) \to C_r$ is the w.e. described in 3.5 and ε the morphism defined in 3.1. As ρ is a surjective w.e., then there is a w.e. $i: C_r \to C_{r-1}(U)$ such that $\rho \circ i = \mathrm{id}$. Then $\varphi = \varphi_r \circ i: C_r \to \Omega^*(\Gamma_r)$ is a w.e. and $f = (1 \otimes \varphi) \circ \varepsilon$ is homotopic over A to f_r , hence is a model for the evaluation map $X \times \Gamma_r \to Y_r$.

REMARK. In the construction 3.1 of the Sullivan model, we only need to assume A finite dimensional in each degree provided V is finite dimensional, because the DG-algebra Q(W) depends only on elements of A whose degree is not more than the maximal degree of the elements in V (same remark for 3.5).

Hence the main theorem 3.2, with essentially the same proof, is valid under the hypothesis that either

- (i) the rational homotopy of the fiber of the nilpotent bundle $p: Y \to X$ is finite dimensional and X has a model A which is finite dimensional in each degree, or
- (ii) X has a model A which is finite dimensional in each degree and such that dim $H^*(A)$ is finite.

Indeed in that case, we can prove the induction step 3.5 using A; to pass to the limit when r tends to infinity, we can replace A by a finite dimensional algebra.

REFERENCES

- 1. P. P. Grivel, Formes différentielles et suites spectrales, Ann. Inst. Fourier (Grenoble) 29 (1979).
- 2. E. H. Spanier, Algebraic topology, McGraw-Hill, New York, 1966.
- 3. D. Sullivan, Infinitesimal computation in topology, Inst. Hautes Études Sci. Publ. Math. 47 (1977), 269-331.
 - 4. R. Thom, L'homologie des espaces fonctionnels, Colloq. Topol. Algébrique, Louvain, 1956, pp. 29-39.
 - 5. S. Halperin, Lectures on minimal models, mimeographed notes, Lille.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF GENEVA, CH-1211 GENEVE 24, SWITZERLAND